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Transients on Lossless Exponential Transmission
Lines Using Allen’s Method

Pierre Bouchard, Student Member, IEEE, Réal R.J. Gagné, Member, IEEE, and J.-L. Lavoie

Abstract—The exact analytical expressions of the time-domain
step response matrix for the lossless exponential transmission
line are developed, therefore extending the range of problems
where Allen’s method can be applied for the transient analysis
of networks consisting of interconnections of linear distributed
elements, lnmped linear and/or nonlinear elements, and arbitrary
sources. An indication as to the correctness of the expressions
is obtained by comparing them to published results, which also
helps to gain a better physical insight into the step response
matrix. Moreover, the response to a step input and also the
transient response to a sudden sinusoidal excitation are presented.

1. INTRODUCTION

ESPITE its interest, the transient behavior of nonuniform

two-conductor transmission lines has been addressed
only by a limited number of papers [1]-[9]. These authors
have studied a single line driven by a voltage or a current
source and terminated, in most cases, by a linear load resis-
tance. The input signal is an ideal step function u(t), with the
exception of [2] and [3], where use is made of a trapezoidal
pulse and a step with a finite rise time, respectively. Two
basic approaches are considered: on one hand, the method of
characteristics is applied to a nonuniform line approximated
by sections of uniform lines {1]—[3]; on the other hand, the
Laplace transform is used to obtain closed-form time-domain
solutions for specific types of tapered lines and special end
conditions [4]—[6]. These latter expressions are extremely
complicated and require numerical techniques for any quanti-
tative evaluation [e.g., 4, Table 1]; furthermore, they are only
valid for a limited time span (typically, T = ¢ < 37, where 7 is
the one-way transit time of the line). More recently, just as in
[1]-[3], Hsue and Hechtman [7] approximated a nonuniform
line with a cascade of uniform line segments and obtained
its step response by summing the multiple reflections instead
of using the method of characteristics. This approach, just as
in [1]-[3], requires a large amount of line segments for an
adequate simulation of fast transients, and is therefore unattrac-
tive in terms of computer memory requirements and execution
time. Recently, Hsue [8] studied the lossless exponential line.
His work was exclusively concerned with the derivation of the
time-domain scattering parameters of that particular line using
the inverse Laplace transform. The author did not mention
which technique could be used to compute the corresponding
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transient voltage and current waveforms from the scattering
parameters and the boundary conditions of the line. Finally
Chang [9], combining the method of characteristics and the
waveform relaxation technique, studied among other things the
step response of a parabolic nonuniform line with skin-effect
losses, for linear and nonlinear loads.

In this paper, transients on lossless exponential lines are
studied following Silverberg and Wing’s approach [10] (re-
vised by Allen [11]) which was originally applied to lossless
and lossy but distorsionless uniform lines. This numerical
method can be used for the transient analysis of networks
consisting of interconnections of linear distributed elements,
lumped linear and/or nonlinear elements, and arbitrary inde-
pendent or dependent sources. The overall network is solved
in the time domain using convolution techniques. According
to [11], each linear subnetwork is characterized in the time
domain by a step response matrix (E)(t).

The inverse Laplace transform is used to obtain the exact
analytical expressions of the @ () matrix for the lossless
exponential line, thus widening the range of application of
Allen’s method. Moreover, complete transient responses using
these expressions are presented for a step signal with a finite
rise time and, also, for a sinusoidal input. The effects of
multiple reflections from both ends of the line are clearly
visible, even though the receiving end is terminated in a
“matched load.”

II. TIME-DOMAIN STEP RESPONSE MATRIX
OF A LOSSLESS EXPONENTIAL LINE

Ghausi and Kelly [12] obtained the Y parameters (short-
circuit admittances) in closed form for a class of nonuni-
form distributed networks in which the per-unit-length series
impedance Z(s,z) and the per-unit-length shunt admittance
Y (s, z) can be separated into functions of the Laplace trans-
form variable s and the distance z along the line; moreover,
the product Z(s, 2)Y (s, #) is independent of z. In other words,
these authors restricted their study to networks such that

Z(s)
Z(s8,2) = and Y(s,z) =Y (s)p(z 1
(5,5 = 25 (2 =Y(()
where Z(s) = sLo and Y{(s) = sC, for a lossless line.

P(z) describes the variations of the distributed inductance and

capacitance along the line. Thus, for the exponential line,
— ei?éz 5 >0

@

where 6 is the taper rate. For negative values of the argument
in (2), the per-unit-length inductance increases exponentially

p(2)
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with the distance from its initial value Ly at z = 0 and,
similarly, the per-unit-length capacitance decreases exponen-
tially with z from its initial value Cy at z = 0. Finally,
the “characteristic impedance” of the exponential line can be
written, using (1) and (2), as

(s, ,/LO
?) (s,2) Co

where Zy(0) is the impedance at z = 0.

Substitution of the above expressions into eq. (4—16) of
[12] yields the short-circuit admittance parameters of the ex-
ponential line in the Laplace transform domain [10], [11]

|:£\/ s2LaCy + 62
: coth(Z\/SQLOCO n 52) - 5@]
—e~% ) 3
= =
331(8) il 4/ 82LoCo 4+ 6
. csch(l\/ 82LyCh + 62)
26
[Z\/ SZL()CO + 52
: coth(E\/SQLOCO n 52) n 66]

where £ is the length of the line in meters.

Thus, for a nonuniform line, the reciprocity property
Y12(8) = Ys1(s) is valid, as it is in the uniform case; whereas
the symmetry property Yi1(s) = Yao(s) is lost [13]. As
a consequence, three parameters must be evaluated instead
of two.

The goal here is to obtain the step response matrix <?i’(t)
in the time domain, which is related to the short-circuit
admittance matrix in the following manner [11]:

@) = L—l{zf(s)} - L*l{(l/s)?’(s)} .6

It is thus necessary to evaluate the inverse Laplace transform
of

2 2
)= 0| TS o) - £

= Z0(0)e**  (3)

Yll(s)
(42)

Y12(8)

(4b)

Y22(3)

(40)

(6a)
Aja(s) = Azi(s)
- _96—52 T_____.____'Siz—‘l_(ﬂ CSCh(T4 /82 + O£2> (6b)
Aga(s) = e~ 2" [77"33"'0‘200)511( 52 + a2) n Sﬁz
69)
where
)
= Lor (rad/s) (7)
0= i (H™) ®)
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T =4y LyCy  (s) )
=20 (dimensionless) . (10)

It might be of interest to note that (7) represents the cutoff
frequency of the line in the sinusoidal steady state.

With the exception of ¢/s2, which is the transform of the
ramp function wtu(t), the inverse transform of the elements
A,,(s) in (6) cannot be found directly even in two of the
most complete tables of Laplace transforms [14], [15]. Accord-
ingly, it seems appropriate to show how the inverse Laplace
transform of these expressions were obtained.

The evaluation of aq1(t) = £L71{A;1(s)} is considered first.

Since [16]
cothz =2 i ene 2" Re(z) >0 1n
n=0
where
O

(6a) can be expanded into a series

2 2 2 =
Ayr(s) = 9[@ Zﬁne_Q”Tm _ _g%} .
$ s
n=0
(13)
The nth term of this series can be rewritten as
Lt Ve +a? VT | _ et eTbVeTFaT
s N
ooy | etV
+a°L”
$2/s2 + 2
(14)

The first term on the right side of (14) is readily recognized
as [14, p. 250, #3.2-46]

—bV/eTFaT
-1)e T L 7 _ b2 _ .
c { —52+a‘“2} Jg(a\/t b )u(t B b>0
(15)

where Jy(y) is the Bessel function of the first kind of index
zero [15). The following property [15, p. 1020]:

NI - [ [ i@dde = [ -5

(16)

can be applied to the last term of (14) which, combined with
(15), yields

E_l{ \/52_|2.a2 e~ bVET+a® } — I:Jo(a\/t_Z__[ﬁ)
s

+a2/bt(t—x)Jo(a\/$2—b2 )dleu(t—b). a7
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This expression can be rewritten as

E~1{ ___VSQM? e—b\/sz+a2 } — I:JO (a /t2 _ b2 )

52

+ azt/bt J()(OCN/QJQ — b2 ) dz
— a2 B (a\/t2 YT )]u(t —b). (18)

The integrands in (17) and (18) are zero for « < b, because of
the presence of the unit step function u(t — b) in (15). Taking
the inverse transform of (13) term by term, using (18) with
b = 2n7, and reworking constants (8)—(10), yields

a11(t) = Yo(0) {2 i £n [JO (a\/t2 ~ (2n7)? )

n=0

+ ot /z; Jo (a\/xz - (2n7)? ) dz — ay/t2 — (2n7)* 1
- (a\/ﬁ — (2n7)* )]u(t —2nr) — atu(t)} (19)

where Y((0) is the “characteristic admittance” at the sending
end of the line.

The evaluation of agz(t) follows a line similar to that used
for a11(t), which gives

an(t) = Yo(o)e-m{z i En [Jo (a\/ 2 — (2n7)? )

n=0

+ azt/z; Jo (aw/xz - (2m)2> dz ~ o/ — (2n7)2 ],
‘ (a\/ 2 — (2n7)? )] w(t — 2n7) + atu(t)} . (20)

This section is closed with the evaluation of aja(%).
Since [16]

cschz =2 Z e~ (2n—1)z

n=1

Re(z) >0 21

(6b) can also be expressed as a series expansion

A12(5) = Agl(s)
Vo a?

00
— _296—66 T Z 6—(2n—1)7\/52+a2.
g2

n=1

22)

Taking the inverse transform of (22) term by term, using
(18) with b = (2n — 1)1, readily gives

a12(t) = —2Yp(0)e=% i [JO (a\/t2 —(2n - 1)272)
+ ot /(;n—m Jo (a\/x2 - (2n - 1)%72 ) dz

(23)

cu{t — (2n— 1)7) = a1 (t).
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This terminates the evaluation of the four elements of the step
response matrix for a lossless exponential line.

ITI. AGREEMENT WITH COMPARABLE RESULTS

An indication as to the validity of the expressions presented
above can be obtained by relating them to comparable results.

First Case: We shall consider the lossless uniform line.
Clearly, 6 = 0 in this case [see (2)] and, from (7) and (10), it is
seen that ¢ = ¢ = 0. Consequently, the step response matrix
of the lossless uniform line, given by Allen [11, Fig. 7b], can
be obtained as a special case of (19), (20), and (23) by a simple
substitution of these particular values of a and 6.

Second Case: Schaiz and Williams {4, Table 1] derived
analytical expressions, valid for a limited time span, for the
ends’ current of a lossless exponential line driven by an ideal
step generator and terminated by a short circuit. It will be
shown that these expressions correspond to particular cases of
the series presented by the authors. A few relations must be
established first.

A linear two-port characterized by the step response matrix
defined by (5) has the following relationship between the
currents and the voltages in the Laplace transform domain:

Il(S) = All(s) . 8V1(8) + Alz(s) . SV&(S) (243)

—Iz(s) = Azl(s) : SV1(S) + Azz(s) . SVZ(S) (24b)

with both currents entering the two-port. For the particular

situation where the output port is short-circuited and the input

port is driven by an ideal unit step u(t) generator (with zero
internal impedance), (24a) and (24b) reduce to

Il(s) = Au(s) - (]./S) = All(s)

—IZ(S) = Agl(s) © 8- (1/3) = Alz(S) .

Thus, for a lossless exponential line subjected to these bound-

ary conditions, ¢1(¢) and —i2(t) will be given by (19) and

(23), respectively, in the range 07 <t < 0.
Now let us consider the expression given by Schatz and

Williams [4, Table 1, 2nd row] for the sending end current
(valid for 0T < ¢ < 27). With the help of [15, p. 480]

y Ty

| Io@rde = yhoto) + (R Hol) ~ T H )}
(26)

where H,(y) is the Struve function of order v [15], Schatz

and Williams’ expression can be rewritten as

i(0,1) = YO(O){Jo(at) +at [ /O " Jo(@) dz — Jrat) - 1} }
- u(t) 27)

which is identical to the first term, n = 0, of the series (19)
defining a11(%). With respect to the receiving end current,
the expression presented by Schatz and Williams [4, Table 1},
valid in the range 7 < t < 37, is

i(L,t) = 2Y(0)e™% [JO (a\/tz — 72) + o’ / t Jo
. (a\/xz — 7-2> dz —a\/t2 —-12.J; (oz\/t2 — 72 ﬂu(t —-7).

(28)

(25a)
(25b)
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It is easily verified that this equation is identical (except for
a minus sign) to the first term, n = 1, of the series (23)
defining a12(t). These results confirm that the two expressions
given by Schatz and Williams, which were considered here,
are particular cases of those presented in this paper.

1IV. CONSIDERATIONS ON THE NUMERICAL EVALUATION

The Bessel functions were computed using the routines
found in [17]. The indefinite integrals in (19), (20), (23) require
numerical techniques for their evaluation and the composite
trapezoidal rule (e.g., algorithm QTrap in [17]) was found to
be well suited for that task.

V. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the possible uses of the matrix obtained
in Section II, the step response (Fig. 1) and also the transient
response to a sinusoidal input (Fig. 2) are presented. The
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Fig. 1. Step response waveforms for the exponential line network. (a)
Generator voltage: vy(t) = I, (4,4) withz = t/(80A), for 07 < t < 804,
and vy(t) = 1fort > 80A ; (b) sending end current; (c) receiving end
voltage.
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Fig. 2. Sinusoidal transient waveforms for the exponential line network.
(a) Sending end current; (b) receiving end voltage.

lossless exponential line is driven by a voltage source and
is terminated by a resistive load whose value is equal to
the “characteristic impedance” at z = £ [see (3)]. The line
is 0.4 m long and is characterized by the parameters Ly =
0.5 gH/m and Cy; = 200 pF/m. The “characteristic
impedance” Zy(s, z) is, respectively, 50 Q at the input port
and 175 {2 at the output end. Allen’s method has been applied
to compute the transient response. In this case, the network is
composed of a single two-port, the exponential line, which is
subjected to the boundary conditions vy (t) = v,(¢) at z = 0,
and vo(t) = Rpia(t) at z = I. The unit step is approximated
by the incomplete Beta function [17]: vy(t) = I,.(4,4).
Its rise time, from 10 to 90% of its final value, is very
nearly 1.4 ns [see Fig. 1(a)]. The harmonic signal is given
by v,(t) = sinwgt, where fo = 1/7 = 250 MHz; for
this frequency, the line is exactly one wavelength long in the
steady state. Figs. 1 and 2 were obtained for 07 < ¢ < 107,
with a time resolution A = /100 [11]. Unlike the uniform
line, the exponential line is not matched for every type of
signal by merely forcing the equality between Ry and the
“characteristic impedance” at the receiving end. Indeed, the
effects of multiple reflections can be seen in Fig. 1, for a step
excitation. With respect to the response to a sudden sinusoidal
excitation (Fig. 2), a short transient is also observed, indicating
multiple reflections. In the sinusoidal steady state, the ratio of
the output voltage to the input voltage is 1.88, which agrees
well with the theoretical value of 1.87 for the step-up ratio
[4]- The slight discrepancy can be attributed to the fact that a
perfect match would require a series RC load. But since the
line is operated far above its cutoff frequency of about 25 MHz
[see (7)}, it is very nearly matched with only a resistive load
impedance equal to Z(£) [18].
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VI. CONCLUSION

The exact analytical expressions of the step response matrix
- for the lossless exponential transmission line have been de-
veloped in the time domain, therefore extending the range of
problems where Allen’s method can be applied. This approach
can be used to compute the transient response of networks
containing lossless exponential lines subjected to arbitrary
sources -and quite general boundary conditions, for any time
span of interest. An indication as to the correctness of these
expressions has been obtained by relating them to published
results; moreover, the response to a step input and, also, to a
sudden sinusoidal excitation have been presented.
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