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Transients on Lossless Exponential Transmission

Lines Using Allen’s Method
Pierre Bouchard, Student Member, IEEE, R6al R. J. Gagn6, Member, IEEE, and J. -L. Lavoie

Abstract—The exact analytical expressions of the time-domain

step response matrix for the Iossless exponential transmission
line are developed, therefore extending the range of problems

where Allen’s method can be applied for the transient analysis

of networks consisting of interconnections of linear distributed
elements, lumped linear and/or nonlinear elements, and arbitrary

sources. An indication as to the correctness of the expressions

is obtained by comparing them to published results, which also

helps to gain a better physical insight into the step response

matrix. Moreover, the response to a step input and also the

transient response to a sudden sinusoidal excitation are presented.

I. INTRODUCTION

D ESPITE its interest, the transient behavior of nonuniform

two-conductor transmission lines has been addressed

only by a limited number of papers [1] – [9]. These authors

have studied a single line driven by a voltage or a current

source and terminated, in most cases, by a linear load resis-

tance. The input signal is an ideal step function u(t), with the

exception of [2] and [3], where use is made of a trapezoidal

pulse and a step with a finite rise time, respectively. Two

basic approaches are considered: on one hand, the method of

characteristics is applied to a nonuniform line approximated

by sections of uniform lines [1]– [3]; on the other hand, the

Laplace transform is used to obtain closed-form time-domain

solutions for specific types of tapered lines and special end

conditions [4] – [6]. These latter expressions are extremely

complicated and require numerical techniques for any quanti-

tative evaluation [e.g., 4, Table 1]; furthermore, they are only

valid for a limited time span (typically, ~ s t< 3T, where T is

the one-way transit time of the line). More recently, just as in

[1]–[3], Hsue and Hechtman [7] approximated a nonuniform

line with a cascade of uniform line segments and obtained

its step response by summing the multiple reflections instead

of using the method of characteristics. This approach, just as

in [1] – [3], requires a large amount of line segments for an

adequate simulation of fast transients, and is therefore unattrac-

tive in terms of computer memory requirements and execution

time. Recently, Hsue [8] studied the lossless exponential line.

His work was exclusively concerned with the derivation of the

time-domain scattering parameters of that particular line using

the inverse Laplace transform. The author did not mention

which technique could be used to compute the corresponding
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transient voltage and current waveforms from the scattering

parameters and the boundary conditions of the line. Finally

Chang [9], combining the method of characteristics and the

waveform relaxation technique, studied among other things the

step response of a parabolic nonuniform line with skin-effect

losses, for linear and nonlinear loads.

In this paper, transients on lossless exponential lines are

studied following Silverberg and Wing’s approach [10] (re-

vised by Allen [11]) which was originally applied to lossless

and lossy but distorsionless uniform lines. This numerical

method can be used for the transient analysis of networks

consisting of interconnections of linear distributed elements,

lumped linear and/or nonlinear elements, and arbitrary inde-

pendent or dependent sources. The overall network is solved

in the time domain using convolution techniques. According

to [11], each linear subnetwork is characterized in the time

domain by a step response matrix ~(t).

The inverse Laplace transforfi is used to obtain the exact

analytical expressions of the a (t)matrix for the lossless

exponential line, thus widening the range of application of

Allen’s method. Moreover, complete transient responses using

these expressions are presented for a step signal with a finite

rise time and, also, for a sinusoidal input. The effects of

multiple reflections from both ends of the line are clearly

visible, even though the receiving end is terminated in a

“matched load.”

II. TIME-DOMAIN STEP RESPONSEMATRIX

OF A LOSSLESS EXPONENTIm LINE

Ghausi and Kelly [12] obtained the Y parameters (short-
circuit admittances) in closed form for a class of nonuni-

form distributed networks in which the per-unit-length series

impedance Z (s, z) and the per-unit-length shunt admittance

Y(s, z) can be separated into functions of the Laplace trans-

form variable s and the distance .z along the line; moreover,

the product 2(s, .z)Y (s, z) is independent of z. In other words,
these authors restricted their study to networks such that

z(s)
2(s, 2’) = — and Y(s, z) = Y(s)p(z) (1)

p(,z)

where Z(s) = SLO and Y(s) = SCO for a lossless line.

P(z) describes the variations of the distributed inductance and

capacitance along the line. Thus, for the exponential line,

p(z) = e*26z S>o (2)

where 6 is the taper rate. For negative values of the argument

in (2), the per-unit-length inductance increases exponentially
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with the distance from its initial value Lo at z = O and,

similarIy, the per-unit-length capacitance decreases exponen-

tially with z from its initial value Co at z = O. Finally,

the “characteristic impedance” of the exponential line can be

written, using (1) and (2), as

zo(.,z,=(E=ge2.=zo(o)e2,.‘(3)
where 20(0) is the impedance at z = O.

Substitution of the above expressions into eq. (4– 16) of

[12] yields the short-circuit admittance parameters of the ex-

ponential line in the Laplace transform domain [10], [11]

Yl,(s) = Y,I(s) = S //s2LoCo +62

(4b)

( H
.coth ~~s2L&o + 62 + 61 (4C)

where 1 is the length of the line in meters.

Thus, for a nonuniform line, the reciprocity property

Y12(s) = Y21(s) is valid, as it is in the uniform case; whereas

the symmetry property Y1l (s) = Y22(s) is lost [13]. As

a consequence, three parameters must be evaluated instead

of two.

The goal here is to obtain the step response matrix ~(t)

in the time domain, which is related to the short-circuit

admittance matrix in the following manner [11]:

w(t) = L-l{x(s)} = L-1{(1/s)r(s)} . (5)

It is thus necessary to evaluate the inverse Laplace transform

of

(6a)

A12(s) = A,I(s)

(6c)

where

6

“=-
(rad/s) (7)

(H-l) (8)

j- . e~~ (s) (9)

p=(fe (dimensionless). I(10)

It might be of interest to note that (7) represents the cutoff

frequency of the line in the sinusoidal steady state.

With the exception of y/s2, which is the transform of the

ramp function ptu(t), the inverse transform of the elements

A,j (s) in (6) cannot be found directly even in two of the

most complete tables of Laplace transforms [14], [15]. Accord-

ingly, it seems appropriate to show how the inverse LaplIace

transform of these expressions were obtained.

The evaluation of all(t) = Z–l {A1l (s) } is considered first.

Since [16]

cc

cothx = 2 ~ &ne–2”Z Re(x) >0 (11)

where

{

‘1/2, n=()
E ~=

1, n>O
(12)

(6a) can be expanded into a series

(13)

The nth term of this series can be rewritten as

‘“2’-1{:=’1
(14)

The first term on the right side of (14) is readily recognized

as [14, p. 250, #3.2-46]

~-l{$g}=J@=wt-b) b>o
(15)

where ,Jo (y) is the Bessel function of the first kind of index

zero [15]. The following property [15, p. 1020]:

(16)

can be applied to the last term of (14) which, combined with

(15), yields

{

~_, /7%7 e_,/m

.92 }= [J+-)

+a!’ ! ‘(t-x) Jo(a/=
)1

dX u(~ – b) . (17)
h

J
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This expression can be rewritten as

{

~.1 ~ &J~

S2
]= [..(./-)

+c+o(d=)dx

The integrands in (17) and (18) are zero for $< b, because of

the presence of the unit step function u(t – b) in (15). Taking

the inverse transform of (13) term by term, using (18) with

b = 272T, and reworking constants (8)–(10), yields

+.2t~TJ+d==)dx-~-Jl

}
~(d=q].(~--- (19)

where Y.(0) is the “characteristic admittance” at the sending

end of the line.

The evaluation of azz (t) follows a line similar to that used

for all (t),which gives

{ 5J.[J+J==)azz(t) = YO(0)e=2f1 2

+Q2@(d==)dx -~-Jl

This section is closed with the evaluation of a12 (t).

Since [16]

cc

Csch x = 2 ~ e–(2n–l)z Re (x) >0 (21)
n=l

(6b) can also be expressed as a series expansion

A~z(s) = A21(s)

—_ -,,e-,k ‘y 5e-(2n-1,7~.

n=l

(22)

Taking the inverse transform of (22) term by term, using

(18) with b = (2n – 1)7, readily gives

cc

a12(t). –2Yo(0)e–6L ~ [Jo (@I/~

n=l )

+.2t~n_,,TJ@==qdx

. u(t – (2n – l)T) = a21(t) . (23)

This terminates the evaluation of the four elements of the step
response matrix for a lossless exponential line.

III. AGREEMENT WITH COMPARABLE RESULTS

An indication as to the validity of the expressions presented

above can be obtained by relating them to comparable results.

First Case: We shall consider the lossless uniform line.

Clearly, 6 = O in this case [see (2)] and, from (7) and (10), it is

seen that a = P = O. Consequently, the step response matrix

of the lossless uniform line, given by Allen [11, Fig. 7b], can

be obtained as a special case of (19), (20), and (23) by a simple

substitution of these particular values of a and 6.

Second Case: Schatz and Williams [4, Table 1] derived

analytical expressions, valid for a limited time span, for the

ends’ current of a lossless exponential line driven by an ideal

step generator and terminated by a short circuit. It will be

shown that these expressions correspond to particular cases of

the series presented by the authors. A few relations must be

established first.

A linear two-port characterized by the step response matrix

defined by (5) has the following relationship between the

currents and the voltages in the Laplace transform domain:

lI(s) = AH(s). sV1(S) + A12(s) o sV2(S) (2@

–12(s) = A21(s) ~sV1(S) + A22(s) osV2(S) (24b)

with both currents entering the two-port. For the particular

situation where the output port is short-circuited and the input

port is driven by an ideal unit step u(t) generator (with zero

internal impedance), (24a) and (24b) reduce to

~~(s) = All(s) . S . (1/s) = AII(S) (25a)

–12(s) = A21(s) . S . (1/s) = A12(s) . (25b)

Thus, for a lossless exponential line subjected to these bound-

ary conditions, il (t) and –iz (t) will be given by (19) and

(23), respectively, in the range 0+ S t < cc.

Now let us consider the expression given by Schatz and

Williams [4, Table 1, 2nd row] for the sending end current

(valid for 0+ S t < 27-). With the help of [15, p. 480]

/
y Jo(z) dz = gJo(y) + ; {JI(y)~o(y) – JI)(g)~,(v)}

o
(26)

where IIV (y) is the Struve function of order v [15], Schatz

and Williams’ expression can be rewritten as

{ [J

at

i(O, t) = Yo(()) Jo(at) + at Jo(z) dx – Jl(a.t) – 1
0 1}.u(t) (27)

which is identical to the first term, n = O, of the series (19)

defining all (t). With respect to the receiving end current,

the expression presented by Schatz and Williams [4, Table 1],

valid in the range T ~ t < 37, is

i(l, t) = 2Yo(0)e–6g
[(

Jo .~~) + a2t~Jo

~ (.=)d*-._J,(._)]u(t-T)

(28)
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It is easily verified that this equation is identical (except for

a minus sign) to the first term, n = 1, of the series (23)

defining a12 (t). These results confirm that the two expressions

given by Schatz and Williams, which were considered here,

are particular cases of those presented in this paper.

IV. CONSIDERATIONSON THE NUMERICAL EVALUATION

The Bessel functions were computed using the routines

found in [17]. The indefinite integrals in (19), (20), (23) require

numerical techniques for their evaluation and the composite

trapezoidal rule (e.g., algorithm QTrap in [17]) was found to

be well suited for that task.

V. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the possible uses of the matrix obtained

in Section II, the step response (Fig. 1) and also the transient

response to a sinusoidal input (Fig. 2) are presented. The
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Fig. 1. Step response waveforms for the exponential line network. (a)

Generator voltage: vg(t)= 1.(4,4)withr = t/(80A),for 0+ < ~ < 80A,
and Vg (t) = 1 for t > 80A ; (b) sending end current; (c) recenung end
voltage.

Fig. 2.
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Sinusoidal transient waveforms for the exponential line

(a) Sending end current; (b) receiving end voltage.

network.

lossless exponential line is driven by a voltage source and

is terminated by a resistive load whose value is equall to

the “characteristic impedance” at .z = L [see (3)]. The line

is 0.4 m long and is characterized by the parameters L() =

0.5 pH/m and CO = 200 pF/m. The “characteristic

impedance” 20 (s, z) is, respectively, 50 Q at the input port

and 175 Q at the output end. Allen’s method has been applied

to compute the transient response. In this case, the network is

composed of a single two-port, the exponential line, which is

subjected to the boundary conditions w(t) = Vg(t) at z ❑= O,

and W2(t) = RLi2 (t) at z = 1. The unit step is approximated

by the incomplete Beta function [17]: v,(t) = lZ (4,, 4).

Its rise time, from 10 to 9070 of its final value, is very

nearly 1.4 ns [see Fig. l(a)]. The harmonic signal is given

by v~ (t) = sin Wet, where j. = l/~ = 250 MHz; for

this frequency, the line is exactly one wavelength long in the

steady state. Figs. 1 and 2 were obtained for 0+ 5 t ~ 10r,

with a time resolution A = r/100 [11]. Unlike the uniform

line, the exponential line is not matched for every type of

signal by merely, forcing the equality between RL and the

“characteristic impedance” at the receiving end. Indeed, the

effects of multiple reflections can be seen in Fig. 1, for a step

excitation. With respect to the response to a sudden sinusoidal

excitatiori (Fig. 2), a short transient is also observed, indicating

multiple reflections. In the sinusoidal steady state, the mtio of

the output voltage to the input voltage is 1.88, which agrees
well with the theoretical value of 1.87 for the step-up ratio

[4]. The slight discrepancy can be attributed to the fact that a

perfect match would require a series RC’ load. But since the

line is operated far above its cutoff frequency of about 25 MHz

[see (7)], it is very nearly matched with only a resistive load

impedance equal to 20(1) [18].
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VI. CONCLUSION

The exact analytical expressions of the step response matrix

for the lossless exponential transmission line have been de-

veloped in the time domain, therefore extending the range of

problems where Allen’s method can be applied. This approach

can be used to compute the transient response of networks

containing lossless exponential lines subjected to arbitrary

sources and quite general boundary conditions, for any time

span of interest. An indication as to the correctness of these

expressions has been obtained by relating them to published

results; moreover, the response to a step input and, also, to a

sudden sinusoidal excitation have been presented.
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